

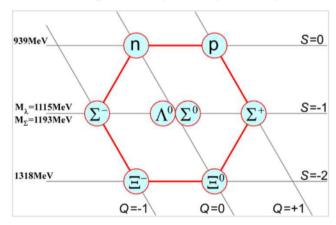
ELEMENTARY PARTICLE PHYSICS

THE PARTICLES (PART II)

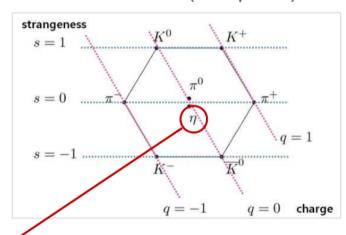
MAY 2020 I HANS STRÖHER (FZ JÜLICH, UNIVERSITY OF COLOGNE)

Outline:

- A brief introduction (history ...)
- The tools (accelerators, targets, detectors ... kinematics, ...)
- The **particles** (hadrons, baryons, mesons ...)
- The fundamental particles (quarks, leptons)
- The forces (gravitation, nuclear forces)
- The fundamental interactions (strong and electro-weak IA)
- The Standard Model of EPP
- Physics Beyond the Standard Model (BSM)
- Spin-offs Applications of EPP



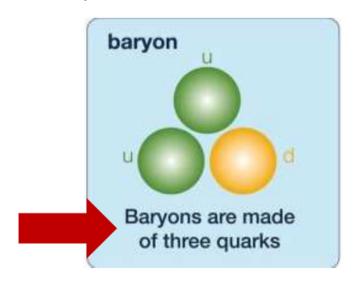
Prelude

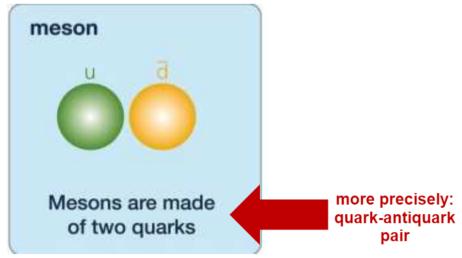

History – The "eightfold way"

When, in the 1960's hadrons were arranged according to their **electrical charge** and their **strangeness**, they lined up into hexagonal patterns:

baryons (w/ spin ½)

mesons (w/ spin 0)

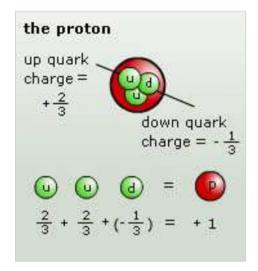

For the mesons, M. Gell-Mann predicted the **gap** would be filled by a particle he called "**eta**" (η) , which was found subsequently ...

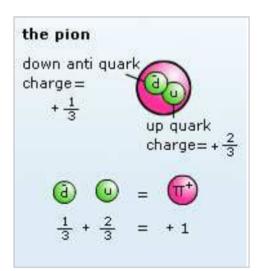


Prelude

Quark Model - Hadron classification scheme

After early unsuccessful attempts, the **quark model** was eventually invented – in its currently known form by **Murray Gell-Mann**: it is a classification scheme for hadrons in terms of their *valence* quarks – the quarks and antiquarks which give rise to the quantum numbers of the hadrons

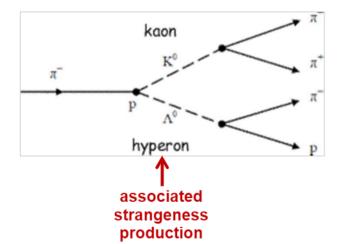


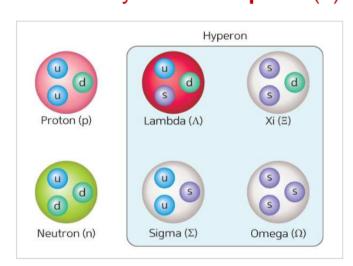

Prelude

Quark Model – fractional charges

The quarks which make up proton, neutron and lightest mesons (pions) were called "up" (u) and "down" (d) quarks; their strangest property is that they have fractional electric charges: u (2/3) and d (-1/3) in terms of e_0 (reversed electric charge for the corresponding anti-quarks)

Example:





Prelude

Quark Model – Strangeness

Example:

Prelude

Quark Model – A third quark

The **new** "**strange**" **quark** (flavor) has an electric charge of -1/3 e_0 .

With 3 quarks (u,d,s), the following 10 states comprising 3-quarks each (i.e. baryons) can be composed (same for anti-quarks) \rightarrow so called **"multiplets"**

"strangeness" of the baryon (i.e. number of strange quarks)

						ட
+3				SSS		
+2			dss	dss		
+1		uus	uds	dds		
0	uuu	uud	udd	ddd		L
0		ddd	udd	uud	uuu	
-1		dds	uds	uus		
-2		dss	uss			
-3		SSS				
dung:	-2	-1	0	+1	+2	Γ_

charge of the baryon

Prelude

Despite the capability of the quark model to bring order to the "particle zoo", its status was still unclear (many thought is a mathematical fiction rather than real objects) ...

Page 8

Introduction

The genesis of quarks: Gell-Mann and Zweig

In 1964, Gell-Mann proposed that **hadrons** are **composite particles**, built from more fundamental entities which themselves manifest an **SU(3) symmetry**

2 possible choices:

- > 4 elementary entities w/ electric charge either 0 or 1 (non-elegant)
- > scheme w/ non-integral values of the charges -> quark model

(Gell-Mann's name comes from a phase in James Joyce's book *Finnegan's Wake*)

Note: the second scheme was independently proposed by **George Zweig** (PostDoc at CERN) – he called the constituents "aces"

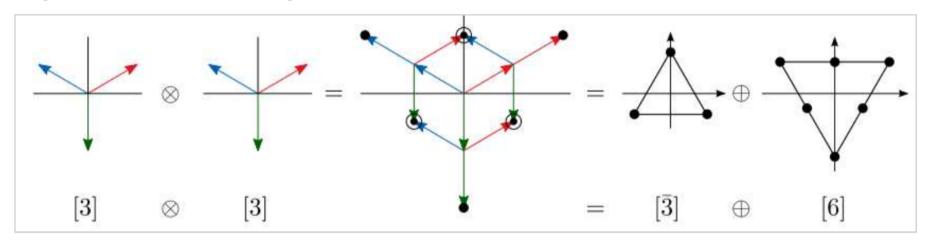
Note: Murray Gell-Mann got the physics NP in 1969



Introduction

The genesis of quarks: fundamental representation of SU(3)

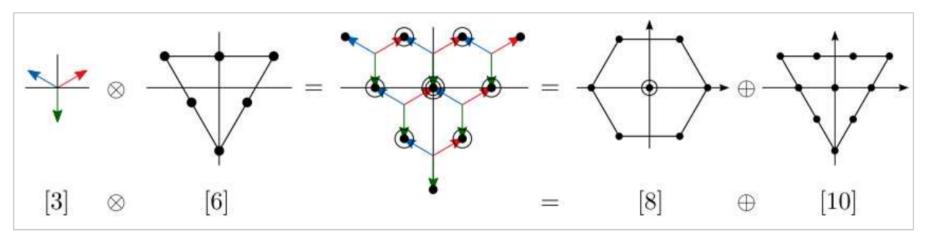
According to **SU(3)**, hadrons are expected to fall into **multiplets** containing 1, 3, 6, 8, 10, 27 ... members (characteristic of the representations of SU(3)); the **triplet**, containing 3 members, is the **fundamental representation**, i.e. the quarks:



Introduction

The genesis of quarks: making of baryons in flavor SU(3)

<u>First:</u> take any two quarks, which arrange in two SU(3) multiplets having 6 symmetric and 3 anti-symmetric states:



Introduction

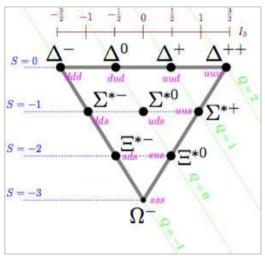
The genesis of quarks: making of baryons in flavor SU(3)

<u>Second</u>: adding the third quark to the **sextet (6)** results in an **octet (8)** and a **decuplet (10)**:

→ in total:

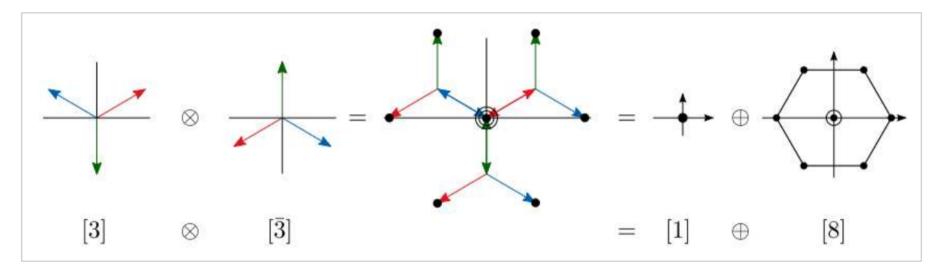
$$3 \otimes 3 \otimes 3 = (6 \otimes 3) \oplus (\overline{3} \otimes 3)$$

= $10 \oplus 8 \oplus 8 \oplus 1$,


Introduction

The genesis of quarks: making of baryons in flavor SU(3)

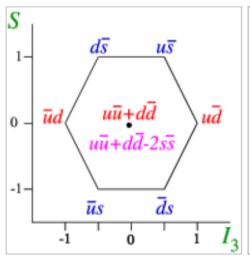
The singlet (1), octet (8) and decuplet (10) states are found experimentally:

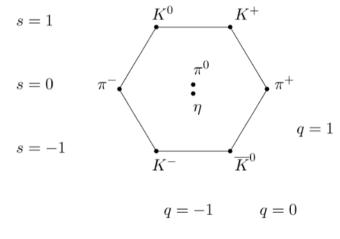

Spin J = 3/2

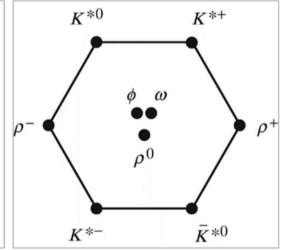
Introduction

The genesis of quarks: making of mesons in flavor SU(3)

The nine $q\overline{q}$ -states (nonet) can be decomposed into a singlet (1) and an octet (8):



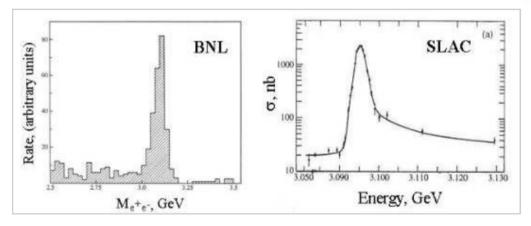


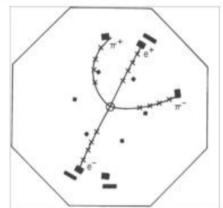

Introduction

The genesis of quarks: making of mesons in flavor SU(3)

They are also realized in nature and have been **found experimentally**:

Spin J = 0 (pseudoscalar mesons)


Spin J = 1 (vector mesons)

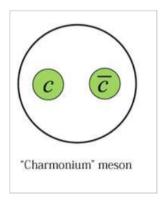


Introduction

The genesis of quarks – "J/Ψ" discovery

In November 1974, the discovery of a **new hadronic state** was simultaneously reported from SLAC (SPEAR) (**B. Richter**) and BNL (AGS) (**S. Ting**) (both received the physics NP in 1976 "for their pioneering work in the discovery of a heavy elementary particle of a new kind"); this new particle is now called the **J/Ψ** and has a rest **mass of** ~ **3.1 GeV/c²**:

pBe-collisions decay into e⁺e⁻ X suggested name "J" e*e- collisions decay into hadrons, I*I-,... suggested name Ψ

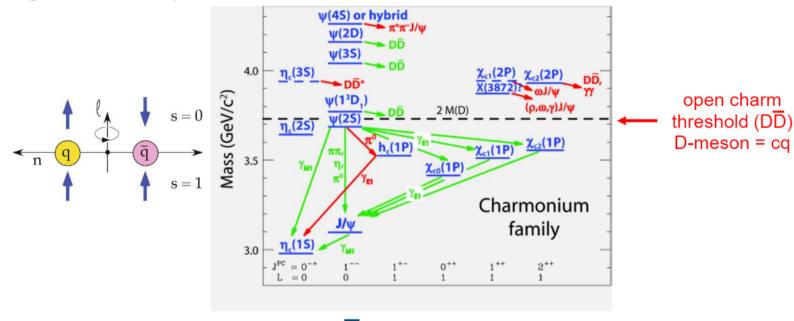

Introduction

The genesis of quarks – the second 2nd-generation quark

The new particle was so heavy that it could not be made out of the known (u,d,s) quarks, but rather a new one: it is called "charm" ("charmed") quark (c).

The existence of a fourth quark had been speculated by a number of authors around 1964 (J. Bjorken and S. Glashow), but its prediction is usually credited to S. Glashow, J. Iliopoulos and L. Maiani in 1970. Its charge is +2/3 e₀.

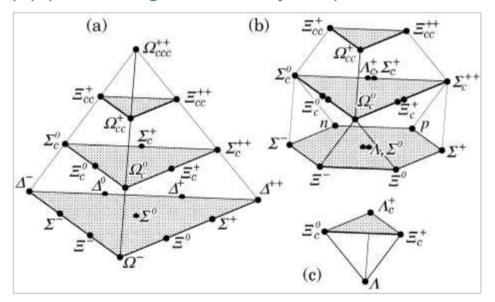
It soon became clear that the J/ Ψ is a **meson** – a bound state of a so called "**charm quark**" (**c**) and an "**anti-charm quark**" ($\overline{\mathbf{c}}$) ("charmonium").



Introduction

The genesis of quarks – charmonium

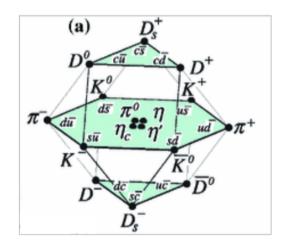
The charmonium family comprises a large variety of states (actually, the **J/Ψ is not** the **ground-state**):

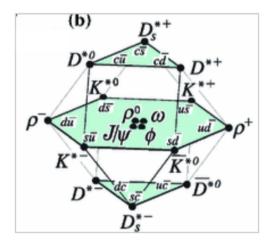

(Note: similar ... "bottomonium" (bb), see below)

Introduction

The genesis of quarks – Charmed baryons

Charmed **baryons** are composite particles which contain at least one (possibly two or even three) charm quarks; many of them have been discovered; they also can be classified in SU(4) (i.e. arranged in **multiplets**):

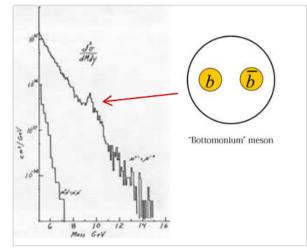



Introduction

The genesis of quarks – Charmed mesons

Charmed **mesons** are composite particles which contain at least one charm quarks; many of them have been discovered; they can be classified in **SU(4) multiplets**:

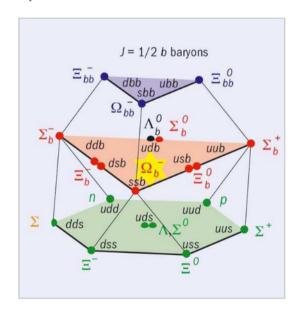
Spin J = 0 (pseudoscalar mesons)

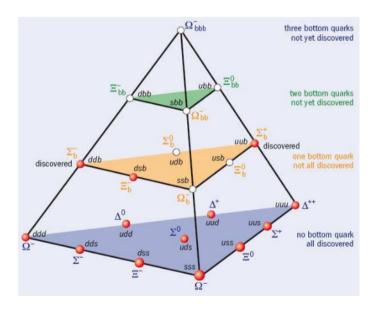

Spin J = 1 (vector mesons)

Introduction

The genesis of quarks – the third-generation quarks

The "bottom" quark or b quark (also: beauty quark) is a third-generation quark with a charge of -1/3 e_0 ; it was first described theoretically in 1973 by physicists Makoto Kobayashi and Toshihide Maskawa to explain CP violation (more later); it was discovered in 1977 at Fermilab E288 (Leon M. Lederman et al.) in 400 GeV pA collisions producing "bottomonium": its "bare" mass is around **4.2** GeV/ c^2 – a bit more than four times the mass of a proton:

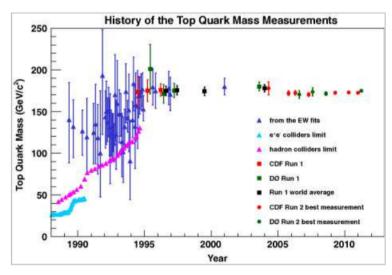




Introduction

The genesis of quarks – the third-generation quarks

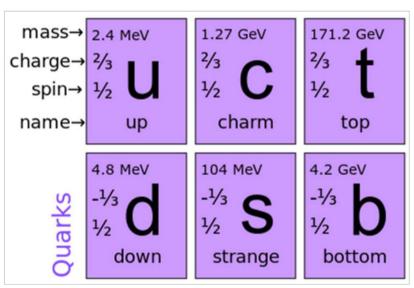
The **baryon** states, which include at least one **bottom quark** ("**bottom baryons**") can be arranged again in SU(4) **multiplets**, but not all of them have been observed up to now:



Introduction

The genesis of quarks – completing the list of quark flavors: t

The "top" quark (symbol: t, also truth quark) is the most massive of all observed elementary particles. Like all quarks, the top quark is an elementary fermion with spin $\frac{1}{2}$; it has an electric charge of +2/3 e_0 and a large mass of 172 GeV/ c^2 , which is about the mass of a tungsten (W) atom; it was discovered in 1995 by the CDF and DØ experiments at Fermilab; single top-quarks first produced in 2006 (DØ);


The lifetime of the **top quark** is about $4 \times 10^{-25} \text{ s}$ – this is **too short** to create a strongly bound state.

Introduction

Summary: three quark generations (families)

According to our current understanding, the **6 quarks** and the corresponding antiquarks account for all hadronic matter in our universe (no further quark family)

Quark	Date	Where	Mass [GeV/c²]	Comment
up, down	-	Ξ	~0.005, ~0.010	Constituents of hadrons, most prominently, proton and neutrons.
strange	1947	-	~0.2	discovered in cosmic rays
charm	1974	SLAC/ BNL	~1.5	Discovered simultaneously in both pp and e^+e^- collisions.
bottom	1977	Fermi- lab	~4.5	Discovered in collisions of protons on nuclei
top	1995	Fermi- lab	~175	Discovered in pp collisions

Note: vastly different mass; why 3 generations?

Introduction

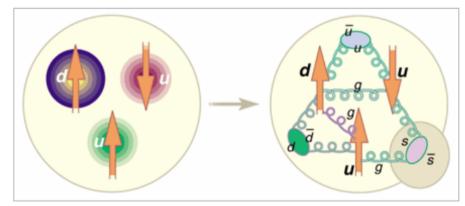
Summary: three quark generations (families)

The table gives the relevant **properties/quantum numbers** of the six quarks:

Flavor	I	I ₃	5	С	В*	Т	Q/e
u	1/2	1/2	0	0	0	0	+2/3
d	1/2	-1/2	0	0	0	0	-1/3
S	0	0	-1	0	0	0	-1/3
С	0	0	0	1	0	0	+2/3
Ь	0	0	0	0	-1	0	-1/3
t	0	0	0	0	0	1	+2/3

For anti-quarks all the signs are changed.

Note: quantum numbers are conserved in electromagnetic, strong interactions

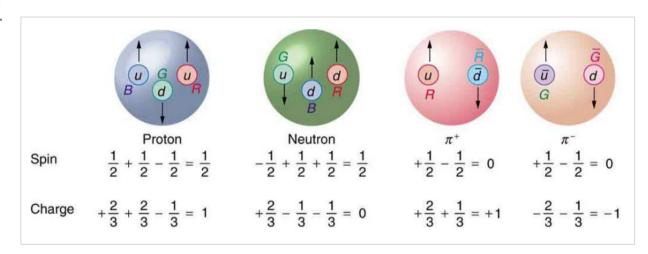

Page 25

Constituent Quark Model (CQM)

The reality of quarks

The (non-relativistic) constituent quark model treats the substructure of hadrons (today known to be very complex – see below) as **quasi-particles**, which have the same quantum numbers (electric charge, baryon number, color, flavor, spin) as the quarks of Quantum-Chromodynamics (QCD – theory of strong interactions).

They can be seen as the QCD quarks (the "bare" quarks or "current" quarks) dressed by clouds of quark-antiquark pairs ("sea" quarks) and gluons and are called "constituent" ("valence") quarks:



Constituent Quark Model (CQM)

The reality of quarks – properties of constituent quarks

Their mass is of the order of 340 MeV/c² (for u and d) and 490 MeV/c² (for s); they have spin $\frac{1}{2}$, i.e. they are fermions and fractional charge (1/3 e₀, 2/3 e₀).

Examples:

(Note: R,G,B ("color") etc. will be introduced later)

Constituent Quark Model (CQM)

The reality of quarks – achievements: magnetic moments of baryons

Historically, the prediction of **baryon magnetic moments** was one of the striking successes of the quark model; they are the **vector sum** of the constituent quark magnetic moments:

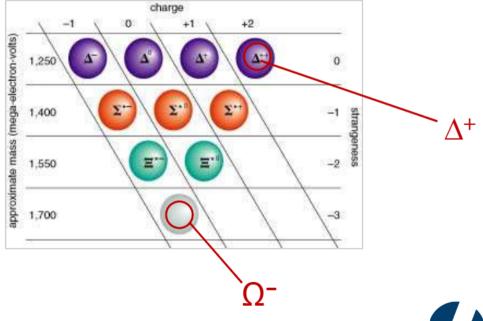
Examples: proton and neutron

$$\alpha = e/2m s$$

p (uud):
$$x_p = 2/3 (2 x_u - x_d) + 1/3 x_d$$

n (udd):
$$\alpha_{\rm p} = 2/3 (2 \alpha_{\rm d} - \alpha_{\rm H}) + 1/3 \alpha_{\rm H}$$

Quark model magnetic moment predictions and measurements						
Particle	Predicted µ	Predicted in μ_N	Measured			
p	$\frac{4}{3}\mu_{N} - \frac{1}{3}\mu_{d}$	+2.79	+2.793			
n	$\frac{4}{3}\mu_{d} - \frac{1}{3}\mu_{N}$	-1.86	-1.913			
Λ	μ_{r}	-0.61	-0.613 ± 0.004			
Σ^-	$\frac{4}{3}\mu_d - \frac{1}{3}\mu_s$	-1.04	-1.160 ± 0.025			
Σ^0	$\frac{2}{3}(\mu_d + \mu_u) - \frac{1}{3}\mu_x$	+0.82	Lifetime too short			
Σ^+	$\frac{4}{3}\mu_{N} - \frac{1}{3}\mu_{S}$	+2.69	+2.458 ± 0.010			
3-	$\frac{4}{3}\mu_{s} - \frac{1}{3}\mu_{d}$	-0.51	-0.651 ± 0.003			
Ξ^0	$\frac{4}{3}\mu_{s} - \frac{1}{3}\mu_{n}$	-1.44	-1.250 ± 0.014			
Ω-	$3\mu_s$	-1.83	-2.20 ± 0.05			



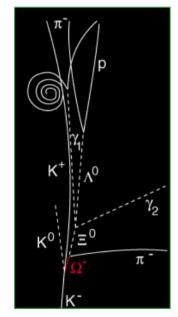
Constituent Quark Model (CQM)

The reality of quarks – achievements: validity of SU(3): the Ω -(sss) (I)

A major **prediction by Gell-Mann** was that a particle, an isotopic singlet with spin = 3/2, positive parity, mass of roughly 1,700 MeV, negative charge, baryon number +1, strangeness = -3, and stable to strong decay, should exist to complete the J^P =

3/2⁺ baryon **decuplet**:

Constituent Quark Model (CQM)


The reality of quarks – achievements: validity of SU(3): the Ω - (sss) (II)

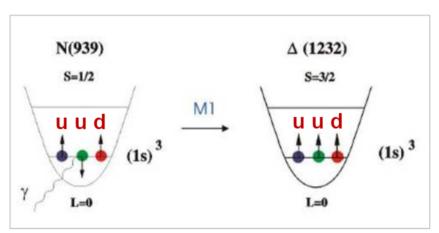
It was therefore a major triumph for the scheme when the **omega-minus**, a baryon with the mass, charge and strangeness predicted, was **discovered in 1964** at BNL by N. Samios et al. using the 80-inch bubble chamber:

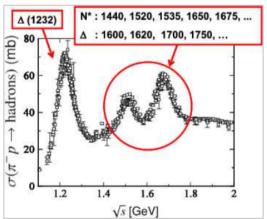
Production:

$$K^- + p \rightarrow \Omega^- + K^+ + K^0$$

 $\bar{u}s$ uud sss $u\bar{s}$ $d\bar{s}$

Decay:

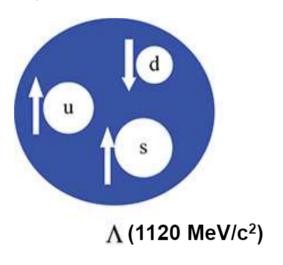


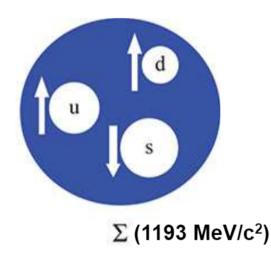


Constituent Quark Model (CQM)

The reality of quarks – achievements: nucleon resonances (N*, Δ *, ...)

Example: The "Δ-resonance" is interpreted as a **flip of one of the quark spins**, which "costs" about 200 MeV of energy:


Higher-mass resonances (N* (I = $\frac{1}{2}$), Δ (I = $\frac{3}{2}$) ...) are considered as higher quantum excitations (e.g. larger total angular momentum ...)

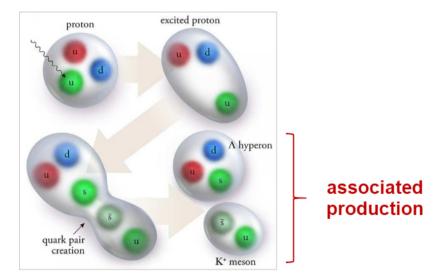


Constituent Quark Model (CQM)

The reality of quarks – achievements: spin direction in quarks

Example: Ground-state neutral hyperons (Λ, Σ) have both the quark content (u,d,s), but **different mass** – why?

→ Obviously (although the total spin of both is ½), it is important which of the 2 quark-spins are parallel

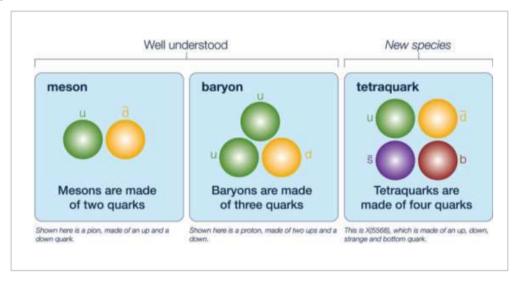


Constituent Quark Model (CQM)

The reality of quarks – achievements: strangeness production

In the CQM, the **associated strangeness productio**n is easily understood in terms of an ss-pair, which is produced and separated into two distinct final state particles

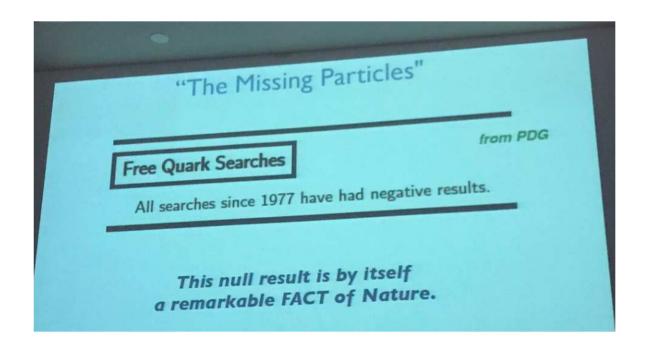
Example:


Note: A obvious question is why the **u-quark** is not flying away, but a qq-pair must be produced

Constituent Quark Model (CQM)

The reality of quarks – achievements: further quark bound-states

Besides **mesons** and **baryons**, there should be other hadrons

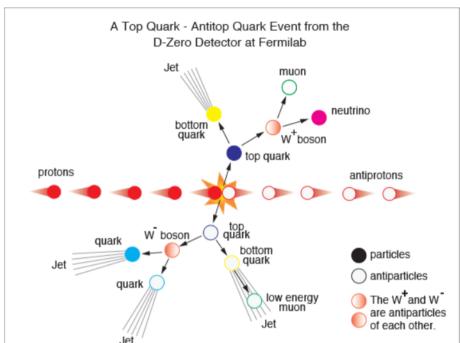

Example: tetraquark

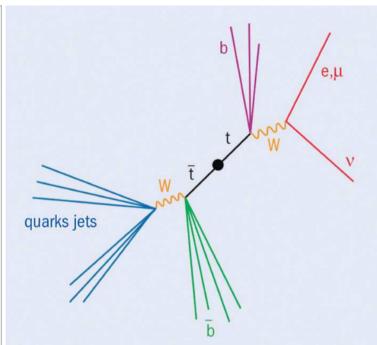
Recently discovered; not clear yet, whether genuine **4-quark state** or a **di-meson molecule**; also pentaquark (5q) and di-baryon (6q).

Constituent Quark Model (CQM)

The reality of quarks – why no observation of free quarks?

→ free quarks cannot be observed (quarks are "confined" inside hadrons)




That's it for today

Page 36

